
����������	
��
������

��������
��
�������
����
���
���������

����
�����
 �!���
"#�����

Jim Kowalkowski, Marc Paterno

1 Introduction

Fermilab is a national laboratory which engages in research into the fundamental
nature of matter. It is the home of the world’s highest energy accelerator, the
Tevatron, which collides protons and anti-protons at an energy of two billion
electron-volts (2 TeV). The Tevatron is the host to two general-purpose detectors,
CDF and DØ. Each of these detectors consists of approximately a million channels
(sensors). The detectors are exposed to proton-antiproton collisions at a rate of
several millions per second; the data read from the detector in response to one of
these collisions is called an event.

After several layers of filtering to remove uninteresting events, we end up with a
50 Hz stream of events of about 250 KB each. The events go through a series of
processing stages we call reconstruction, which produce derived data that even-
tually represent the physics processes that were present in detector at the time the
sensors were read. Several database technologies are used to store and manager
these data. The DØ and CDF experiments are beginning to collect data that is
expected to exceed two petabytes over the next three years.

An event reconstruction program processes a stream of events. This program is
written entirely in C++. It consists of about 200 libraries and more than 200 persis-
tent objects. For this program to be run, it needs a configuration scripts indicating
the task it is to perform and the parameters specific to that task, detector state
information (i.e. voltages, temperatures), sensor calibration constants, detector
alignment constants, and a set of parameters describing the stream of events to be
processed. Each of the concepts above (calibration, geometry, configuration,
alignment, and detector state have objects associated with them. The event can be
thought of as a container object that is composed of many objects, each represent-
ing a real thing found in an event (an electron, a discharge in a drift chamber, a
light pulse in a phototube).

The term database is used in a broad sense within the reconstruction program.
Information such as the calibrations, alignment, state, and configuration (auxil-
iary data) are direct access in nature and are stored in a RDBMS. Events are cate-
gorized and described in a RDBMS event catalog. The processing of events is
essentially sequential in nature, but the file that holds a series of events can easily
be viewed as a small database that allows navigation around the file, describing
Persistency of Objects September 8, 2001 1

the characteristics and summarizing events within the file. Each event can also be
viewed as a database of all the things present in the detector at the moment of the
readout.

In the course of our work supporting several large experiments at Fermilab, we
have used a variety of different distributed computing and database technologies.
We have not been completely satisfied with any of the solutions we have used,
and are thus searching for an improvement. In this paper, we sketch some of the
solutions we have used so far, and describe the features of those solutions which
we have found unsatisfying.

2 Position

We have arrived at the following observations because of the problems we have
encountered while helping to design and implement the infrastructure of the
reconstruction programs for CDF and DØ. They are strongly influenced by the
environment and culture in which we work.

2.1 Concerning Objects

The optimal design for a specific object usually depends on the language in which
the design is to be implemented, and the detailed design often depends on fea-
tures of the particular language, for example templates in C++ or reflection in
JavaTM. Several of the products we have used have put restrictions on the use of
some language features, in order to gain interoperability between languages at
the object level. We find this unacceptable.

If a system is going to gain the widely-touted benefits of object-oriented design, it
must respect encapsulation. Specifically, it may not manipulate the data belong-
ing to an object through anything other than the interface of that object.

Making an object usable from multiple languages is difficult -- especially so when
some of the languages are ones with no support for object-oriented design, such
as FORTRAN-77. Making data structures usable from multiple languages is less
difficult. This causes an immediate tension with the point immediately above.

We have not had success in providing a language-neutral interface to objects,
because of troubles in language features and performance. We have found using a
lowest-common-denominator object definition to support multiple languages
unsuitable.

2.2 Concerning Persistency

Our problem domain (the reconstruction of events) is data-centric. While there
are clear benefits to be gained from an object-oriented design of the reconstruc-
Persistency of Objects September 8, 2001 2

tion software, we believe that an object-oriented view of the persistent data is not
useful. Instead, we find that a set of object-oriented wrappers used to manipulate
relatively simple data structures to be more successful.

Determining the proper point of division between information describing the
objects in an event and the information in the objects themselves is difficult. We
have not yet determined reliable guidelines for deciding when to make subobjects
available as data (for example, as columns in a RDBMS) and when to treat the
subobjects as opaque (for example, as a BLOB in a RDBMS), interpretable only
through the object wrappers of the system.

Schema evolution, the process of managing changes of an object over time, is a
source of trouble with real objects, because the data is bound to a version of the
code. We find that separating the division of the system into data and object
wrappers helps solve the problem.

In our culture, locking users into a single technology is often unacceptable. Lock-
ing users into a single product is still less acceptable, and a single commercial
product is still less so. “Open standards” are very important, so proprietary inter-
faces and languages are frowned upon (JavaTM is the notable exception here).
Open source products are preferred, when available.

Intrusive persistency mechanisms (ones that require specific implementation in
your classes, rather than requiring some interface or protocol) are burdensome.
They often interfere with the natural implementation of classes, and limit what
language features one may use. They also make testing much more difficult; the
burden of recompiling a set of several hundred libraries to test a new feature of
the persistency mechanism often means that such testing is not done, or is done to
a much lesser extent. This also makes the exploration of new design options much
more costly. We strongly prefer non-intrusive mechanisms.

The code that translates a persistent representation to the object representation
can consume large amounts of memory and CPU time. This can grow to dominate
some simple (but important) data processing steps, and so it is important to make
this as small and fast as possible.

2.3 Concerning Database Technology

We have not seen any object-oriented database that will meet our needs.

We have seen RDBMSs that work for the auxiliary data (configuration, geometry,
calibration, and event catalog information). The access patterns for these data are
suited to the tools provided by RDBMSs, and are reasonably predictable. The
access times are acceptable.
Persistency of Objects September 8, 2001 3

HEP community-developed solutions are in use for the handling of the event
data. No other solutions have been demonstrated to be sufficient for handling the
data volumes and access patterns.

3 Future Directions

3.1 Summary of the Past

Here we present a list of some of the features of the software systems we are
involved in. In each case, there are advantages. The purpose of this section is to
focus on some of the problems we are currently encountering as the detectors are
coming online.

3.1.1 Event Data Objects

The current set of data objects inside the event are BLOBs, essentially unusable
without the C++ object. The persistent form of objects within the event is very
C++ oriented. The data objects are streamed in from buffers and out to buffers by
methods in the object or by a data dictionary that has intimate knowledge of the
memory layout of the object.

In many cases, it is convenient for portions of the data objects to be analyzed in a
spreadsheet or relational table view. The BLOBs make this nearly impossible.
Maintaining streaming code within the object is difficult when it comes to ver-
sioning and difficult to migrate to a format that is not a BLOB. Producing a data
dictionary management system for C++ is a large project that involves parsing
C++ header files, and in our case it has a list of restrictions and rules associated
with objects that it can work with.

3.1.2 Database Access

The system has applications connecting directly to the database and applications
connecting through an implementation of a three-tier architecture. There is also
support for multiple database accessors built into a single application (similar the
ODBC data source concept). Code generators are used in one of the projects to
produce get and put routines to retrieve and store data. The use of code genera-
tors greatly simplifies the task of adding information to the database and making
it readily available in C++.

Synchronizing code and data structures between the client application and the
server that connects to the database is a maintenance burden and difficult to test.
The client applications cannot change data formats without the server changing.
Supporting multiple databases within one application is a maintenance burden;
the code to read and translate the database information into objects needs to syn-
chronized at all times. Supporting multiple vendor-supplied protocols or client
Persistency of Objects September 8, 2001 4

libraries within the applications is difficult. Accessing the databases from C++
that we use requires understanding a complex APIs, which means there is a sub-
stantial support and maintenance burden associated this the code.

3.2 Auxiliary Data

We are currently researching the use of HTTP as the protocol for the transfer of
auxiliary data to and from reconstruction programs. We plan to continue our use
of RDBMSs, and to communicate with the RDBMSs through one of the widely
supported “standards” for various languages (JDBC, ODBC, Python DBI, Perl
DBI, etc.), via a servlet or its equivalent. We plan for the data in the messages to be
an XML representation of the data portion of the object being transferred. We see
the following advantages of this arrangement:

• It uses a well established, mature, and relatively simple protocol.

• Clients implementing the protocol are freely available for all the languages in
which we have interest.

• The database access is achieved through well-established methods.

• We hope that XML will be able to support the management of changes in object
format, by including sufficient metadata.

• It allows us to provide a single point of support for code that transforms infor-
mation for each database.

• Neither clients nor servers are not tied to a particular RDBMS.

• Servers can use any language and any available API for a specific database,
while clients of that server need to know nothing about which language or API
is used. Changes in the choices made for a server do not affect any clients

Clients can be implemented in any language, independent of what was chosen for
the server. Different clients can be written in different languages.

We are still trying to understand when to store the information as CLOBs or
BLOBs and when to break it up into attributes within tables. Much of these deci-
sions will be based on how well the system performs and how the information
will be analyzed (column wise for example). The prototype system will help

exe

conversion
to data object

XML
datagram

assemble
datagram from
attributes and
CLOBs

RDBMS
Persistency of Objects September 8, 2001 5

determine the overhead of adding the XML tags to the data, the overhead of the
conversion to object format, and the differences between a text representation and
a binary one. It will also help us to understand how to separate the data -
attributes versus database CLOBs. We will also be evaluating how well suited this
technology is for our environment.

3.3 Event Data Management

We are still working through ways to manage the data held with the events and
within the files. We are hoping that this workshop will help lead us to a better
way to manage this information. The files are about 2 GB in size. It is important to
have summary, indexing and property information about the events in the file so
the application can quickly determine if the event in the file are interesting
enough to be processed. Here are some of the questions we are trying to answer:

• Is it practical to store events in something other than the file format we have
now?

• Does it make sense to use XML as the persistent form for many of the data
objects held within the event? Can the event summary information be made
available in XML?

• Can XML be used in the context of our current file format? Will it help with
language interoperability issues and object versioning?
Persistency of Objects September 8, 2001 6

	Persistency of Objects
	WorkShop on Objects, XML, and Databases
	OOPSLA 2001, Tampa, Florida
	1 Introduction
	2 Position
	2.1 Concerning Objects
	2.2 Concerning Persistency
	2.3 Concerning Database Technology

	3 Future Directions
	3.1 Summary of the Past
	3.1.1 Event Data Objects
	3.1.2 Database Access

	3.2 Auxiliary Data
	3.3 Event Data Management

